Методология функционально-стоимостного анализа ABC (ФСА)
В. Ивлев, Т. Попова
Многие пользователи считают функционально-стоимостной анализ (ФСА) достаточно сложным для понимания. Возможно это связано с тем, что существует слишком мало информации, объясняющей, что же он собственно из себя представляет. Целью данной статьи является раскрытие сущности функционально-стоимостного анализа, простоты его применения, а также исключение элемента загадочности, связанного с ним.
Функционально-стоимостной анализ позволяет выполнить следующие виды работ: определение и проведение общего анализа себестоимости бизнес-процессов на предприятии (маркетинг, производство продукции и оказание услуг, сбыт, менеджмент качества, техническое и гарантийное обслуживание и др.); проведение функционального анализа, связанного с установлением и обоснованием выполняемых структурными подразделениями предприятий функций с целью обеспечения выпуска высокого качества продукции и оказания услуг; определение и анализ основных, дополнительных и ненужных функциональных затрат; сравнительный анализ альтернативных вариантов снижения затрат в производстве, сбыте и управлении за счет упорядочения функций структурных подразделений предприятия; анализ интегрированного улучшения результатов деятельности предприятия.
В настоящее время метод ФСА стал всеобъемлющим инструментом оценки систем, процессов и концепций.
Функционально-стоимостной анализ (ФСА, Activity Based Costing, АВС) - метод определения стоимости и других характеристик изделий, услуг и потребителей, использующих в качестве основы функции и ресурсы, задействованные в производстве, маркетинге, продаже, доставке, технической поддержке, оказании услуг, обслуживании клиентов, а также обеспечении качества.
Метод ФСА разработан как "операционно-ориентированная" альтернатива традиционным финансовым подходам. В частности, в отличие от традиционных финансовых подходов метод ФСА: предоставляет информацию в форме, понятной для персонала предприятия, непосредственно участвующего в бизнес-процессе; распределяет накладные расходы в соответствии с детальным просчетом использования ресурсов, подробным представлением о процессах и их влиянием на себестоимость, а не на основании прямых затрат или учета полного объема выпускаемой продукции.
ФСА-метод - один из методов, позволяющий указать на возможные пути улучшения стоимостных показателей.
Цель создания ФСA- модели для совершенствования деятельности предприятий - достичь улучшений в работе предприятий по показателям стоимости, трудоемкости и производительности. Проведение расчетов по ФСА-модели позволяет получить большой объем ФСА-информации для принятия решения. В основе метода ФСА лежат данные, которые обеспечивают менеджеров информацией, необходимой для обоснования и принятия управленческих решений при применении таких методов, как:
"точно в срок" (Just-in-time, JIT) и KANBAN; глобальное управление качеством (Total Quality Management, TQM); непрерывное улучшение (Kaizen); реинжиниринга бизнес-процессов (Business Process Reengineering, BPR).
Концепция ФСА позволяет представить управленческую информацию в виде финансовых показателей. Используя в качестве единиц измерения финансовых показателей просто US$ или RUB, ФСА-метод отображает финансовое состояние компании лучше, чем это делает традиционный бухгалтерский учет. Это происходит потому, что ФСА-метод физически отражает функции людей, машин и оборудования. ФСА-метод отображает уровень потребления ресурсов функциями, а также причины, по которым эти ресурсы используются. ФСА-информацию можно использовать как для текущего (оперативного) управления, так и для принятия стратегических решений. На уровне тактического управления информацию из ФСА-модели можно использовать для формирования рекомендаций по увеличению прибыли и повышению эффективности деятельности организации. На стратегическом - помощь в принятии решений относительно реорганизации предприятия, изменения ассортимента продуктов и услуг, выхода на новые рынки, диверсификации и т.д. ФСА-информация показывает, как можно перераспределить ресурсы с максимальной стратегической выгодой, помогает выявить возможности тех факторов (качество, обслуживание, снижение стоимости, уменьшение трудоемкости), которые имеют наибольшее значение, а также определить наилучшие варианты капиталовложений.
Основные направления использования ФСА-модели для реорганизации бизнес-процессов - это повышение производительности, снижение стоимости, трудоемкости, времени и повышение качества. Повышение производительности включает в себя три этапа.
На первом этапе осуществляется анализ функций для определения возможностей повышения эффективности их выполнения. На втором - выявляются причины непроизводительных расходов и пути их устранения. И, наконец, на третьем этапе осуществляется мониторинг и ускорение нужных изменений с помощью измерения основных параметров производительности. Что касается снижения стоимости, трудоемкости и времени, то с помощью ФСА-метода можно так реорганизовать деятельность, чтобы было достигнуто устойчивое их сокращение. Для этого необходимо сделать следующее:
сократить время, необходимое для выполнения функций; устранить ненужные функции; сформировать ранжированный перечень функций по стоимости, трудоемкости или времени; выбрать функции с низкой стоимостью, трудоемкостью и временем; организовать совместное использование всех возможных функций; перераспределить ресурсы, высвободившиеся в результате усовершенствий.
Очевидно, что вышеперечисленные действия улучшают качество бизнес-процессов. Повышение качества бизнес-процессов осуществляется за счет проведения сравнительной оценки и выбора рациональных (по стоимостному или временному критерию) технологий выполнения операций или процедур. В основе управления, основанного на функциях, лежат несколько аналитических методов, использующих ФСА-информацию. Это - стратегический анализ, стоимостной анализ, временной анализ, анализ трудоемкости, определение целевой стоимости и исчисление стоимости, исходя из жизненного цикла продукта или услуги. Одним из направлений использования принципов, средств и методов ФСА является планирование бюджета, основанное на функциях. Планирование бюджета использует ФСА-модель для определения объема работ и потребности в ресурсах. Можно выделить два пути использования:
выбор приоритетных направлений деятельности, увязанных со стратегическими целями; разработка реалистичного бюджета.
ФСА-информация позволяет принимать осознанные и целенаправленные решения о распределении ресурсов, опирающиеся на понимание взаимосвязей функций и стоимостных объектов, стоимостных факторов и объема работ.
Развитием ФCА-метода стал метод функционально-стоимостного управления (ФСУ, Activity-Based Management, ФСУ). ФСУ - это метод, который включает управление издержками на основе применения более точного отнесения издержек на процессы и продукцию. Особо обращаем внимание на то, что ФСУ-метод позволяет не только определять издержки, но и управлять ими.
Однако, не стоит ставить знак равенства между управлением и контролем. Данные ФСА/ФСУ используются больше для "предсказательного" моделирования, чем для контроля. На сегодняшний день использование данных об издержках для нужд контроля вытесняется более оперативной информацией от TQM-метода, реализованного в виде функций статистического контроля процессов (Statistical Process Control, SPC), или от интегрированных информационных систем, работающих в режиме реального времени. В процессе построения функционально-стоимостных моделей удалось установить методологическую и технологическую взаимосвязь между IDEF0- и ФСА-моделями. Связанность методов IDEF0 и ФСА заключается в том, что оба метода рассматривают предприятие, как множество последовательно выполняемых функций, а дуги входов, выходов, управления и механизмов IDEF0-модели соответствуют стоимостным объектам и ресурсам ФСА-модели. На Рис. 1 представлена концептуальная модель ФСА-метода, из которой четко видно, что Ресурсы (Затраты) в ФСА-модели - это входные дуги, дуги управления и механизмов в IDEF0-модели (см. Рис. 2), Продукты (Стоимостные объекты) ФСА-модели - это выходные дуги IDEF0-модели, а Действия ФСА-метода - это Функции в IDEF0-модели.
Оценка месячных трудозатрат, связанных с выполнением бизнес-процессов торговой компании. Из Рис. 3 видно, что более половины всех трудозатрат приходятся на выполнение основного бизнес-процесса торговой компании - реализацию товаров через торговые подразделения компании. Рис. 4. Оценка стоимостных затрат торговой компании за месяц Приведенные примеры оценки временных и стоимостных затрат компании являются обобщенными для всей компании. Их можно использовать для принятия стратегических решений. Недостатками данного метода оценки являются следующие: непрозрачность стоимостных и временных затрат, связанных с выполнением основных, вспомогательных и управляющих бизнес-процессов; непрозрачность стоимостных и временных затрат структурных подразделений торговой компании; невозможность оперативного управления торговой компании. На Рис. 5-6 приведены примеры проведения оценки технологий работы каждого структурного подразделения торговой компании. Рис. 5. Оценка трудозатрат структурных подразделений торговой компании за месяц Рис. 6. Оценка бизнес-процессов торговой компании Из Рис.5 можно сделать вывод, что наиболее загруженными являются: коммерческий отдел, отдел логистики и бухгалтерия. Рис. 6 показывает, что до перераспределения в торговой компании наибольшей объем времени и средств занимали вспомогательные бизнес-процессы, но после перераспределения бизнес-процессов максимальные показатели времени и средств стали приходиться на выполнение основных бизнес-процессов, связанных с реализацией товаров через торговые подразделения компании. Данный метод оценки позволяет: определить загрузку основных, вспомогательных и управляющих бизнес-процессов; рационально распределить стоимостные и временные затраты при выполнении бизнес-процессов; определить временные загрузки каждого структурного подразделения торговой компании. Главным недостатком данного вида оценки, является отсутствие оперативного управления через выделенные центры ответственности (центры финансового учета). В рассматриваемой торговой компании были выделены следующие центры ответственности: центры дохода - отдел логистики, финансовый отдел; центры прибыли - коммерческий отдел; центры затрат - бухгалтерия, АСУ, юридический отдел, общий отдел. На Рис. 7 приведена диаграмма оценки по центрам финансового учета, на которой представлены показатели доходов, затрат и прибыли торговой компании за определенный промежуток времени. Рис. 7.Оценка центров ответственности торговой компании На Рис. 8 дана оценка прибыли компании, связанной с реализацией товара через торговую сеть. Из диаграммы можно сделать вывод, что наиболее прибыльной является реализация товаров через торговые секции компании. Рис. 8. Оценка эффективности реализации товара через торговую сеть компании Из рассмотренных вариантов проведения оценки, наиболее эффективным является последний, так как оценка выделенных центров ответственности торговой компании позволяет оперативно управлять ее работой.
Описание стандартов
IDEF1
Анализ и изучение взаимосвязей между информационными потоками
IDEF1X
Метод для разработки реляционных баз данных
IDEF3
Документирование технологических процессов, происходящих на предприятии
IDEF5
Стандарт онтологического исследования
ABC
Функционально-стоимостной анализ (ФСА, Activity Based Costing)
IDEF3 является стандартом документирования технологических
Геннадий Верников, www.vernikov.ru Предназначение IDEF3 IDEF3 является стандартом документирования технологических процессов, происходящих на предприятии, и предоставляет инструментарий для наглядного исследования и моделирования их сценариев. Сценарием (Scenario) мы называем описание последовательности изменений свойств объекта, в рамках рассматриваемого процесса (например, описание последовательности этапов обработки детали в цеху и изменение её свойств после прохождения каждого этапа). Исполнение каждого сценария сопровождается соответствующим документооборотом, который состоит из двух основных потоков: документов, определяющих структуру и последовательность процесса (технологических указаний, описаний стандартов и т.д.), и документов, отображающих ход его выполнения (результатов тестов и экспертиз, отчетов о браке, и т.д.). Для эффективного управления любым процессом, необходимо иметь детальное представление об его сценарии и структуре сопутствующего документооборота. Средства документирования и моделирования IDEF3 позволяют выполнять следующие задачи: Документировать имеющиеся данные о технологии процесса, выявленные, скажем, в процессе опроса компетентных сотрудников, ответственных за организацию рассматриваемого процесса. Определять и анализировать точки влияния потоков сопутствующего документооборота на сценарий технологических процессов. Определять ситуации, в которых требуется принятие решения, влияющего на жизненный цикл процесса, например изменение конструктивных, технологических или эксплуатационных свойств конечного продукта. Содействовать принятию оптимальных решений при реорганизации технологических процессов. Разрабатывать имитационные модели технологических процессов, по принципу "КАК БУДЕТ, ЕСЛИ..." Два типа диаграмм в IDEF3 Существуют два типа диаграмм в стандарте IDEF3, представляющие описание одного и того же сценария технологического процесса в разных ракурсах. Диаграммы относящиеся к первому типу называются диаграммами Описания Последовательности Этапов Процесса (Process Flow Description Diagrams, PFDD), а ко второму - диаграммами Состояния Объекта в и его Трансформаций Процессе (Object State Transition Network, OSTN).
Предположим, требуется описать процесс окраски детали в производственном цеху на предприятии. С помощью диаграмм PFDD документируется последовательность и описание стадий обработки детали в рамках исследуемого технологического процесса. Диаграммы OSTN используются для иллюстрации трансформаций детали, которые происходят на каждой стадии обработки. На следующем примере, опишем, как графические средства IDEF3 позволяют документировать вышеуказанный производственный процесс окраски детали. В целом, этот процесс состоит непосредственно из самой окраски, производимой на специальном оборудовании и этапа контроля ее качества, который определяет, нужно ли деталь окрасить заново (в случае несоответствия стандартам и выявления брака) или отправить ее в дальнейшую обработку. Рисунок 1. Пример PFDD диаграммы. На рис.1 изображена диаграмма PFDD, являющаяся графическим отображение сценария обработки детали. Прямоугольники на диаграмме PFDD называются функциональными элементами или элементами поведения (Unit of Behavior, UOB) и обозначают событие, стадию процесса или принятие решения. Каждый UOB имеет свое имя, отображаемое в глагольном наклонении и уникальный номер. Стрелки или линии являются отображением перемещения детали между UOB-блоками в ходе процесса. Линии бывают следующих видов: - Старшая (Precedence) - сплошная линия, связывающая UOB. Рисуется слева направо или сверху вниз. - Отношения (Relational Link)- пунктирная линия, использующаяся для изображения связей между UOB - Потоки объектов (Object Flow)- стрелка с двумя наконечниками используется для описания того факта, что объект (деталь) используется в двух или более единицах работы, например, когда объект порождается в одной работе и используется в другой. Объект, обозначенный J1 - называется перекрестком (Junction). Перекрестки используются для отображения логики взаимодействия стрелок (потоков) при слиянии и разветвлении или для отображения множества событий, которые могут или должны быть завершены перед началом следующей работы.
Различают перекрестки для слияния (Fan-in Junction) и разветвления (Fan- out Junction) стрелок. Перекресток не может использоваться одновременно для слияния и для разветвления. При внесении перекрестка в диаграмму необходимо указать тип перекрестка. Классификация возможных типов перекрестков приведена в таблице.
Обозначение | Наименование |
Смысл в случае слияния стрелок (Fan-in Junction) |
Смысл в случае разветвления стрелок (Fan-out Junction) |
Asynchronous AND | Все предшествующие процессы должны быть завершены | Все следующие процессы должны быть запущены | |
Synchronous AND | Все предшествующие процессы завершены одновременно | Все следующие процессы запускаются одновременно | |
Asynchronous OR | Один или несколько предшествующих процессов должны быть завершены | Один или несколько следующих процессов должны быть запущены | |
Synchronous OR | Один или несколько предшествующих процессов завершаются одновременно | Один или несколько следующих процессов запускаются одновременно | |
XOR (Exclusive OR) | Только один предшествующий процесс завершен |
Только один следующий процесс запускается |
Например, мы можем декомпозировать UOB "Окрасить Деталь", представив его отдельным процессом и построив для него свою PFDD диаграмму. При этом эта диаграмма будет называться дочерней, по отношению к изображенной на рис. 1, а та, соответственно родительской. Номера UOB дочерних диаграмм имеют сквозную нумерацию, т.е., если родительский UOB имеет номер "1", то блоки UOB на его декомпозиции будут соответственно иметь номера "1.1", "1.2" и т.д. Применение принципа декомпозиции в IDEF3 позволяет структурировано описывать процессы с любым требуемым уровнем детализации. Рисунок 2. Пример OSTN диаграммы Если диаграммы PFDD технологический процесс "С точки зрения наблюдателя", то другой класс диаграмм IDEF3 OSTN позволяет рассматривать тот же самый процесс "С точки зрения объекта". На рис.2 представлено отображение процесса окраски с точки зрения OSTN диаграммы. Состояния объекта (в нашем случае детали) и Изменение состояния являются ключевыми понятиями OSTN диаграммы. Состояния объекта отображаются окружностями, а их изменения направленными линиями. Каждая линия имеет ссылку на соответствующий функциональный блок UOB, в результате которого произошло отображаемое ей изменение состояния объекта.
Деятельность любого предприятия можно представить
Геннадий Верников, www.vernikov.ru Предназначение стандарта IDEF1 Деятельность любого предприятия можно представить как непрерывное изменение состояния физических и интеллектуальных объектов, имеющих отношение к предприятию, таких как сотрудники, средства производства, производимые продукты, идеи, финансы и т.д. Для эффективного менеджмента этим процессом, каждое изменение того или иного объекта должно иметь свое документальное отображение. Этими отображениями служат личные дела сотрудников, отчеты, рекламная продукция, служебные записки и т.д. Их совокупность назовем информационной областью предприятия. Движение информации (например, документооборот) и изменение ее назовем информационными потоками. Очевидно, что любому бизнес процессу, а также любому изменению физических объектов должен соответствовать определенный информационный поток. Более того, руководство, при построении стратегических планов развития и управлении деятельностью предприятия, (издавая приказы, распоряжения и т.д.), фактически руководствуется информационными потоками и вносит в них изменения, таким образом осуществляя информационный менеджмент. Стандарт IDEF1 был разработан как инструмент для анализа и изучения взаимосвязей между информационными потоками в рамках коммерческой деятельности предприятия. Целью подобного исследования является дополнение и структуризация существующей информации и обеспечение качественного менеджмента информационными потоками. Необходимость в подобной реорганизации информационной области как правило возникает на начальном этапе построения корпоративной информационной системы, и методология IDEF1 позволяет достаточно наглядно обнаружить "черные дыры" и слабые места в существующей структуре информационных потоков. Применение методологии IDEF1, как инструмента построения наглядной модели информационной структуры предприятия по принципу "Как должно быть" позволяет решить следующие задачи: Выяснить структуру и содержание существующих потоков информации на предприятии Определить какие проблемы, выявленные в результате функционального анализа и анализа потребностей, вызваны недостатком управления соответствующей информацией. Выявить, информационные потоки, требующие дополнительного управления для эффективной реализации модели. С помощью IDEF1 происходит изучение существующей информации о различных объектах в области деятельности предприятия.
Характерно то, что IDEF1-модель включает в рассмотрение не только автоматизированные компоненты, базы данных и соответствующую им информацию, но также и реальные объекты, такие как сами сотрудники, кабинеты, телефоны и т.д. Миссия методологии IDEF1 состоит в том, чтобы выявить и четко постулировать потребности в информационном менеджменте в рамках коммерческой деятельности предприятия. В отличие от методов разработки структур баз данных (например, IDEF1X), IDEF1 является аналитическим методом и используется преимущественно для выполнения следующих действий: Определения самой информации и структуры ее потоков, имеющей отношение к деятельности предприятия Определение существующих правил и законов, по которым осуществляется движение информационных потоков, а также принципов управления ими. Выяснение взаимосвязей между существующими информационными потоками в рамках предприятия. Выявление проблем, возникающих вследствие недостатка качественного информационного менеджмента. Результаты анализа информационных потоков могут быть использованы для стратегического и тактического планирования деятельности предприятия и улучшения информационного менеджмента. Однако основной целью использования методологии IDEF1 все же остается исследование движения потоков информации и принципов управления ими на начальном этапе процесса проектирования корпоративной информационно-аналитической системы, которая будет способствовать более эффективному использованию информационного пространства. Наглядные модели IDEF1 обеспечивают базис для построения мощной и гибкой информационной системы. Основные преимущества IDEF1 Методология IDEF1 позволяет на основе простых графических изображений моделировать информационные взаимосвязи и различия между: Реальными объектами Физическими и абстрактными зависимостями, существующими среди реальных объектов Информацией, относящейся к реальным объектам Структурой данных, используемой для приобретения, накопления, применения и управления информацией. Одним из основных преимуществ методологии IDEF1 является обеспечение последовательного и строго структурированного процесса анализа информационных потоков в рамках деятельности предприятия.
Другим отличительным свойством IDEF1 является широко развитая модульность, позволяющая эффективно выявлять и корректировать неполноту и неточности существующей структуры информации, на всем протяжении этапа моделирования. Концепции моделирования IDEF1 При построении информационной модели проектировщик всегда оперирует с двумя основными глобальными областями, каждой из которой соответствует множество характерных объектов. Первой из этих областей является реальный мир, или же совокупность физических и интеллектуальных объектов, таких, как люди, места, вещи, идеи и т.д., а также все свойства этих объектов и зависимости между ними. Второй же является информационная область. Она включает в себя существующие информационные отображения объектов первой области и их свойств. Информационное отображение, по существу, не является объектом реального мира, однако изменение его, как правило, является следствием некоторого изменения соответствующего ему объекта реального мира. Методология IDEF1 разработана как инструмент для исследования статического соответствия вышеуказанных областей и установления строгих правил и механизмов изменения объектов информационной области при изменении соответствующих им объектов реального мира. Терминология и семантика IDEF1 Методология IDEF1 разделяет элементы структуры информационной области, их свойства и взаимосвязи на классы. Центральным понятием методологии IDEF1 является понятие сущности. Класс сущностей представляет собой совокупность информации, накопленной и хранящейся в рамках предприятия и соответствующей определенному объекту или группе объектов реального мира. Основными концептуальными свойствами сущностей в IDEF1 являются: 1) Устойчивость. Информация, имеющая отношение к той или иной сущности постоянно накапливается. 2) Уникальность. Любая сущность может быть однозначно идентифицирована из другой сущности. Каждая сущность имеет своё имя и атрибуты. Атрибуты представляют собой характерные свойства и признаки объектов реального мира, относящихся к определенной сущности.
Класс атрибутов представляет собой набор пар, состоящих из имени атрибута и его значения для определенной сущности. Атрибуты, по которым можно однозначно отличить одну сущность от другой называются ключевыми атрибутами. Каждая сущность может характеризоваться несколькими ключевыми атрибутами. Класс взаимосвязей в IDEF1 представляет собой совокупность взаимосвязей между сущностями. Взаимосвязь между двумя отдельными сущностями считается существующей в том случае, класс атрибутов одной сущности содержит ключевые атрибуты другой сущности. Каждый из вышеописанных классов имеет свое условное графическое отображение, согласно методологии IDEF1. На рис. 1 приведен пример IDEF1 - диаграммы. На ней представлены две сущности с именами "Отдел" и "Сотрудник" и взаимозвязь между ними с именем "работает в". Имя взаимосвязи всегда выражается в глагольной форме. Если же между двумя или несколькими объектами реального мира не существует установленной зависимости, то с точки зрения IDEF1, между соответсвующими им сущностями взаимосвязь также отсутствует. В заключение стоит еще раз отметить, что стандарт IDEF1 является методом изучения и анализа, в отличие от очень сходного по терминологии и семантике стандарта IDEF1X, предназначенного для разработки структуры реляционных баз данных и оперирующего с конкретными объектами физического мира.
Основы методологии IDEF1X
Геннадий Верников, www.vernikov.ru
Предназначение IDEF1X
IDEF1X является методом для разработки реляционных баз данных и использует условный синтаксис, специально разработанный для удобного построения концептуальной схемы. Концептуальной схемой мы называем универсальное представление структуры данных в рамках коммерческого предприятия, независимое от конечной реализации базы данных и аппаратной платформы. Будучи статическим методом разработки, IDEF1X изначально не предназначен для динамического анализа по принципу "AS IS", тем не менее, он иногда применяется в этом качестве, как альтернатива методу IDEF1. Использование метода IDEF1X наиболее целесообразно для построения логической структуры базы данных после того, как все информационные ресурсы исследованы (скажем с помощью метода IDEF1) и решение о внедрении реляционной базы данных, как части корпоративной информационной системы, было принято. Однако не стоит забывать, что средства моделирования IDEF1X специально разработаны для построения реляционных информационных систем, и если существует необходимость проектирования другой системы, скажем объектно-ориентированной, то лучше избрать другие методы моделирования.
Существует несколько очевидных причин, по которым IDEF1X не следует применять в случае построения нереляционных систем. Во-первых, IDEF1X требует от проектировщика определить ключевые атрибуты, для того чтобы отличить одну сущность от другой, в то время как объектно-ориентированные системы не требуют задания ключевых ключей, в целях идентифицирования объектов. Во-вторых, в тех случаях, когда более чем один атрибут является однозначно идентифицирующим сущность, проектировщик должен определить один из этих атрибутов первичным ключом, а все остальные вторичными. И, таким образом, построенная проектировщиком IDEF1X-модель и переданная для окончательной реализации программисту является некорректной для применения методов объектно-ориентированной реализации, и предназначена для построения реляционной системы.
Концепция и семантика IDEF1X
Сущности в IDEF1X и их атрибуты.
Хотя терминология IDEF1X практически совпадает с терминологией IDEF1, существует ряд фундаментальных отличий в теоретических концепциях этих методологий.
Сущность в IDEF1X описывает собой совокупность или набор экземпляров похожих по свойствам, но однозначно отличаемых друх от друга по одному или нескольким признакам. Каждый экземпляр является реализацией сущности. Таким образом, сущность в IDEF1X описывает конкретный набор экземпляров реального мира, в отличие от сущности в IDEF1, которая представляет собой абстрактный набор информационных отображений реального мира. Примером сущности IDEF1X может быть сущность "СОТРУДНИК", которая представляет собой всех сотрудников предприятия, а один из них, скажем, Иванов Петр Сергеевич, является конкретной реализацией этой сущности. В примере, приведенном на рис. 1, каждый экземпляр сущности СОТРУДНИК содержит следующую информацию: ID сотрудника, имя сотрудника, адрес сотрудника и т.п. В IDEF1X модели эти свойства называются атрибутами сущности. Каждый атрибут содержит только часть информации о сущности.
Связи между сущностями
Связи в IDEF1X представляют собой ссылки, соединения и ассоциации между сущностями. Связи это суть глаголы, которые показывают, как соотносятся сущности между собой. Ниже приведен ряд примеров связи между сущностями: Отдел <состоит из> нескольких Сотрудников Самолет <перевозит> нескольких Пассажиров. Сотрудник <пишет> разные Отчеты.
Так как отношения многие ко многим могут скрыть другие бизнес правила или ограничения, они должны быть полностью исследованы на одном из этапов моделирования. Например, иногда отношение многие ко многим на ранних стадиях моделирования идентифицируется неправильно, на самом деле представляя два или несколько случаев отношений один-ко-многим между связанными сущностями. Или, в случае необходимости хранения дополнительных сведений о связи многие-ко-многим, например, даты или комментария, такая связь должна быть заменена дополнительной сущностью, содержащей эти сведения. При моделировании необходимо быть увереным в том, что все отношения многие ко многим будут подробно обсуждены на более поздних стадиях моделирования для обеспечения правильного моделирования отношений. Идентификация сущностей. Представление о ключах. Сущность описывается в диаграмме IDEF1X графическим объектом в виде прямоугольника. На рис.2 приведен пример IDEF1X диаграммы. Каждый прямоугольник, отображающий собой сущность, разделяется горизонтальной линией на часть, в которой расположены ключевые поля и часть, где расположены неключевые поля. Верхняя часть называется ключевой областью, а нижняя часть областью данных. Ключевая область объекта СОТРУДНИК содержит поле "Уникальный идентификатор сотрудника", в области данных находятся поля "Имя сотрудника", "Адрес сотрудника", "Телефон сотрудника" и т.д. Ключевая область содержит первичный ключ для сущности. Первичный ключ - это набор атрибутов, выбранных для идентификации уникальных экземпляров сущности. Атрибуты первичного ключа располагаются над линией в ключевой области. Как следует из названия, неключевой атрибут - это атрибут, который не был выбран ключевым. Неключевые атрибуты располагаются под чертой, в области данных. При создании сущности в IDEF1X модели, одним из главных вопросов, на который нужно ответить, является: "Как можно идентифицировать уникальную запись?". Для этого требуется уникальная идентификация каждой записи в сущности для того, чтобы правильно создать логическую модель данных.
Напомним, что сущности в IDEF1X всегда имеют ключевую область и, поэтому в каждой сущности должны быть определены ключевые атрибуты. Выбор первичного ключа для сущности является очень важным шагом, и требует большого внимания. В качестве первичных ключей могут быть использованы несколько атрибутов или групп атрибутов. Атрибуты, которые могут быть выбраны первичными ключами, называются кандидатами в ключевые атрибуты (потенциальные атрибуты). Кандидаты в ключи должны уникально идентифицировать каждую запись сущности. В соответствии с этим, ни одна из частей ключа не может быть NULL, не заполненной или отсутствующей. Например, для того, чтобы корректно использовать сущность СОТРУДНИК в IDEF1X модели данных (а позже в базе данных), необходимо иметь возможность уникально идентифицировать записи. Правила, по которым вы выбираете первичный ключ из списка предполагаемых ключей, очень строги, однако могут быть применены ко всем типам баз данных и информации. Правила устанавливают, что атрибуты и группы атрибутов должны: Уникальным образом идентифицировать экземпляр сущности. Не использовать NULL значений. Не изменяться со временем. Экземпляр идентифицируется при помощи ключа. При изменении ключа, соответственно меняется экземпляр. Быть как можно более короткими для использования индексирования и получения данных. Если вам нужно использовать ключ, являющийся комбинацией ключей из других сущностей, убедитесь в том, что каждая из частей ключа соответствует правилам. Для наглядного представления о том, как целесообразно выбирать первичные ключи, приведем следующий пример - выберем первичный ключ для знакомой нам сущности "СОТРУДНИК": Атрибут "ID сотрудника" является потенциальным ключом, так как он уникален для всех экземпляров сущности СОТРУДНИК. Атрибут "Имя сотрудника" не очень хорош для потенциального ключа, так как среди служащих на предприятии может быть, к примеру, двое Иванов Петровых. Атрибут "Номер страхового полиса сотрудника" является уникальным, но проблема в том, что СОТРУДНИКА может не иметь такового. Комбинация атрибутов "имя сотрудника" и "дата рождения сотрудника" может оказаться удачной для наших целей и стать искомым потенциальным ключом. После проведенного анализа можно назвать два потенциальных ключа - первый "Номер сотрудника" и комбинация, включающая поля "имя сотрудника" и "Дата рождения сотрудника".
Так как атрибут " Номер сотрудника" имеет самые короткие и уникальные значения, то он лучше других подходит для первичного ключа. При выборе первичного ключа для сущности, разработчики модели часто используют дополнительный (суррогатный) ключ, т.е. произвольный номер, который уникальным образом определяет запись в сущности. Атрибут "Номер сотрудника" является примером суррогатного ключа. Суррогатный ключ лучше всего подходит на роль первичного ключа потому, что является коротким и быстрее всего идентифицирует экземпляры в объекте. К тому же суррогатные ключи могут автоматически генерироваться системой так, чтобы нумерация была сплошной, т.е. без пропусков. Потенциальные ключи, которые не выбраны первичными, могут быть использованы в качестве вторичных или альтернативных ключей. С помощью альтернативных ключей часто отображают различные индексы доступа к данным в конечной реализации реляционной базы. Если сущности в IDEF1X диаграмме связаны, связь передает ключ (или набор ключевых атрибутов) дочерней сущности. Эти атрибуты называются внешними ключами. Внешние ключи определяются как атрибуты первичных ключей родительского объекта, переданные дочернему объекту через их связь. Передаваемые атрибуты называются мигрирующими. Классификация сущностей в IDEF1X. Зависимые и независимые сущности. При разработке модели, зачастую, приходится сталкиваться с сущностями, уникальность которых зависит от значений атрибута внешнего ключа. Для этих сущностей (для уникального определения каждой сущности) внешний ключ должен быть частью первичного ключа дочернего объекта. Дочерняя сущность, уникальность которой зависит от атрибута внешнего ключа, называется зависимой сущностью. В примере на рис.1 сущность СОТРУДНИК является зависимой сущностью потому, что его идентификация зависит от сущности ОТДЕЛ. В обозначениях IDEF1X зависимые сущности представлены в виде закругленных прямоугольников. Зависимые сущности далее классифицируются на сущности, которые не могут существовать без родительской сущности и сущности, которые не могут быть идентифицированы без использования ключа родителя (сущности, зависящие от идентификации).
Сущность СОТРУДНИК принадлежит ко второму типу зависимых сущностей, так как сотрудники могут существовать и без отдела. Напротив, существуют ситуации в которых сущность зависит от существования другой сущности. Рассмотрим две сущности: ЗАПРОС, используемый для отслеживания запросов покупателей, и ПОЗИЦИЯ ЗАПРОСА, который отслеживает отдельные элементы в ЗАПРОСе. Связь между этими двумя сущностями может быть выражена в виде ЗАПРОС <содержит> один или несколько ПОЗИЦИЙ ЗАПРОСА. В этом случае, ПОЗИЦИЯ ЗАПРОСА зависит от существования ЗАКАЗА. Сущности, независящие при идентификации от других объектов в модели, называются независимыми сущностями. В вышеописанном примере сущность ОТДЕЛ можно считать независимой. В IDEF1X независимые сущности представлены в виде прямоугольников. Типы связей между сущностями. Идентифицирующие и неидентифицирующие связи. В IDEF1X концепция зависимых и независимых сущностей усиливается типом взаимосвязей между двумя сущностями. Если вы хотите, чтобы внешний ключ передавался в дочернюю сущность (и, в результате, создавал зависимую сущность), то можете создать идентифицирующую связь между родительской и дочерней сущность. Идентифицирующие взаимосвязи обозначаются сплошной линией между сущностями. Неидентифицирующие связи, являющиеся уникальными для IDEF1X, также связывают родительскую сущность с дочерней. Неидентифицирующие связи используются для отображения другого типа передачи атрибутов внешних ключей - передача в область данных дочерней сущности (под линией). Неидентифицирующие связи отображаются пунктирной линией между объектами. Так как переданные ключи в неидентифицирующей связи не являются составной частью первичного ключа дочерней сущности, то этот вид связи не проявляется ни в одной идентифицирующей зависимости. В этом случае и ОТДЕЛ, и СОТРУДНИК рассматриваются как независимые сущности. Тем не менее, взаимосвязь может отражать зависимость существования, если бизнес правило для взаимосвязи определяет то, что внешний ключ не может принимать значение NULL.Если внешний ключ должен существовать, то это означает, что запись в дочерней сущности может существовать только при наличии ассоциированной с ним родительской записи. Преимущества IDEF1X Основным преимуществом IDEF1X, по сравнению с другими многочисленными методами разработки реляционных баз данных, такими как ER и ENALIM является жесткая и строгая стандартизация моделирования. Установленные стандарты позволяют избежать различной трактовки построенной модели, которая несомненно является значительным недостатком ER.
в одной из ветвей философии,
Геннадий Верников, www.vernikov.ru Исторически, понятие онтологии появилось в одной из ветвей философии, называемой метафизикой, которая изучает устройство реального мира. Основной характерной чертой онтологического анализа является, в частности, разделение реального мира на составляющие и классы объектов (at its joints) и определение их онтологий, или же совокупности фундаментальных свойств, которые определяют их изменения и поведение. Таким образом, естественная наука представляет собой типичный пример онтологического исследования. Например, атомная физика классифицирует и изучает свойства наиболее фундаментальных объектов реального мира, таких как элементарные частицы, а биология, в свою очередь, описывает характерные свойства живых организмов, населяющих планету. Однако фундаментальные и естественные науки не обладают достаточным инструментарием для того, чтобы полностью охватить область, представляющую интерес для онтологического исследования. Например, существует большое количество сложных формаций или систем, созданных и поддерживаемых человеком, таких как производственные фабрики, военные базы, коммерческие предприятия и т.д. Эти формации представляют собой совокупность взаимосвязанных между собой объектов и процессов, в которых эти объекты тем или иным образом участвуют. Онтологическое исследование подобных сложных систем позволяет накопить ценную информацию об их работе, результаты анализа которой будут иметь решающее мнение при проведении процесса реорганизации существующих и построении новых систем. Методология IDEF5 обеспечивает наглядное представление данных, полученных в результате обработки онтологических запросов в простой естественной графической форме. Основные принципы онтологического анализа Онтологический анализ обычно начинается с составления словаря терминов, который используется при обсуждении и исследовании характеристик объектов и процессов, составляющих рассматриваемую систему, а также создания системы точных определений этих терминов.
Кроме того, документируются основные логические взаимосвязи между соответствующими введенным терминам понятиями. В дальнейшем мы не будем делать различия между понятиями и терминами. Результатом этого анализа является онтология системы, или же совокупность словаря терминов, точных их определений взаимосвязей между ними. Таким образом, онтология включает в себя совокупность терминов и правила, согласно которым эти термины могут быть скомбинированы для построения достоверных утверждений о состоянии рассматриваемой системы в некоторый момент времени. Кроме того, на основе этих утверждений, могут быть сделаны соответствующие выводы, позволяющие вносить изменения в систему, для повышения эффективности её функционирования. В любой системе существует две основные категории предметов восприятия, такие как сами объекты, составляющие систему (физические и интеллектуальные) и взаимосвязи между этими объектами, характеризующие состояние системы. В терминах онтологии, понятие взаимосвязи, однозначно описывает или, другими словами, является точным дескриптором зависимости между объектами системы в реальном мире, а термины - являются, соответственно, точными дескрипторами самих реальных объектов. При построении онтологии, в первую очередь происходит создание списка или базы данных дескрипторов и с помощью них, если их набор достаточен, создается модель системы. Таким образом, на начальном этапе должны быть выполнены следующие задачи: 1) Создание и документирования словаря терминов 2) Описание правил и ограничений, согласно которым на базе введенной терминологии формируются достоверные утверждения, описывающие состояние системы. 3) Построение модели, которая на основе существующих утверждений, позволяет формировать необходимые дополнительные утверждения. Что мы имеем в виду под необходимыми дополнительными утверждениями? Дело в том, что при рассмотрении каждой системы существует огромное количество утверждений, достоверно отображающих ее состояние в различных разрезах, а построенная онтологическим способом модель должна выбирать из них наиболее полезные для эффективного рассмотрения в том или ином контексте.
Дополнительно, эта модель помогает описывать поведение объектов и соответствующее изменение взаимосвязей между ними, или, другими словами, поведение системы. Таким образом, онтология представляет собой некий словарь данных, включающий в себя и терминологию и модель поведения системы. Концепции IDEF5 Процесс построения онтологии, согласно методологии IDEF5 состоит из пяти основных действий: 1) Изучение и систематизирование начальных условий. Это действие устанавливает основные цели и контексты проекта разработки онтологии, а также распределяет роли между членами проекта 2) Сбор и накапливание данных. На этом этапе происходит сбор и накапливание необходимых начальных данных для построения онтологии 3) Анализ данных. Эта стадия заключается в анализе и группировке собранных данных и предназначена для облегчения построения терминологии. 4) Начальное развитие онтологии. На этом этапе формируется предварительная онтология, на основе отобранных данных. 5) Уточнение и утверждение онтологии - Заключительная стадия процесса. Язык описания онтологий в IDEF5 Для поддержания процесса построения онтологий в IDEF5 существуют специальные онтологические языки: схематический язык (Schematic Language-SL) и язык доработок и уточнений (Elaboration Language-EL). SL является наглядным графическим языком, специально предназначенным для изложения компетентными специалистами в рассматриваемой области системы основных данных в форме онтологической информации (См. рисунок 1). Этот несложный язык позволяет естественным образом представлять основную информацию в начальном развитии онтологии и дополнять существующие онтологии новыми данными. EL представляет собой структурированный текстовой язык, который позволяет детально характеризовать элементы онтологии. Язык SL позволяет строить разнообразные типы диаграмм и схем в IDEF5. Основная цель всех этих диаграмм - наглядно и визуально представлять основную онтологическую информацию. Несмотря на кажущееся сходство, семантика и обозначения схематичного языка SL существенно отличается от семантики и обозначений других графических языков.
Дело в том, что часть элементов графической схемы SL может быть изменен или вовсе не приниматься во внимание языком EL. Причина этого состоит в том, что основной целью применения SL является создание лишь вспомогательной структурированной конструкции онтологии, и графические элементы SL не несут достаточной информации для полного представления и анализа системы, тем самым они не предназначены для сохранения при конечном этапе проекта. Тщательный анализ, обеспечение полноты представления структуры данных, полученных в результате онтологического исследования, являются задачей применения языка EL.
Обозначения классов, отдельных элементов | Обозначение взаимосвязей и изменения состояния | Обозначение процессов, соединений и перекрестков |
Обозначение класса: Обозначение отдельного элемента: | Обозначение первичных взаимосвязей: 1) Взаимосвязь многие со многими 2) Взаимосвязь двух классов Обозначение вторичных взаимосвязей между двумя классами: Обозначения изменения состояния: 1) Медленное изменение 2) Быстрое изменение 3) Мгновенное изменение | Обозначение процесса Обозначение соединений: Обозначение перекрестков: |
На рисунке 2 приведен пример такой диаграммы, построенной на основе тривиальной возможности классификации многоугольников по количеству углов. Из геометрии известно точное математическое определение многоугольника, суть определяющих свойств родительского класса. Определяющим свойством каждого дочернего класса дополнительно является количество углов в многоугольнике. Очевидно, зная это определяющее свойство для любого многоугольника, можно однозначно отнести его к тому или иному дочернему классу. С помощью диаграмм DS, как правило, классифицируются логические объекты. Диаграммы естественной классификации или же диаграммы NKC, наоборот, не предполагают того, что свойства класса являются необходимым и достаточным признаком для принадлежности к ним тех или иных объектов. В этом виде диаграмм определение свойств класса является более общим. Пример такой диаграммы также приведен на рис.2. Композиционная схема. Композиционные схемы (Composition Schematics) являются механизмом графического представления состава классов онтологии и фактически представляют собой инструменты онтологического исследования по принципу "Что из чего состоит". В частности, композиционные схемы позволяют наглядно отображать состав объектов, относящихся к тому или иному классу. На рисунке 3 изображена композиционная схема шариковой ручки, относящейся к классу шариковых автоматических ручек. В данном случае шариковая ручка является системой, к которой мы применяем методы онтологического исследования. С помощью композиционной схемы мы наглядно документируем, что авторучка состоит из нижней и верхней трубки, нижняя трубка в свою очередь включает в себя кнопку и фиксирующий механизм, а верхняя трубка включает в себя стержень и пружину. Схема взаимосвязей. Схемы взаимосвязей (Relation Schematics) позволяют разработчикам визуализировать и изучать взаимосвязи между различными классами объектов в системе. В некоторых случаях схемы взаимосвязей используются для отображения зависимостей между самими же классовыми взаимосвязями.
Мотивацией для развития подобной возможности послужило то тривиальное правило, что все вновь разработанные концепции всегда базируются на уже существующих и изученных. Это тесно согласуется с теорией Новака и Гоуэна (Novak & Gowin, 1984), суть которой в том, что изучение любой системы часто происходит от частного к общему, то есть, происходит изыскание и исследование новой частной информации, влияющее на конечные характеристики более общей концепции, к которой эта информация имела прямое отношение. Исходя из этой гипотезы, естественным образом изучения новой или плохо понимаемой взаимосвязи является соотнесение ее с достаточно изученной взаимосвязью, для исследования характеристик их сосуществования. Диаграмма состояния объекта. Диаграмма состояния объекта (Object State Schemantic) позволяет документировать тот или иной процесс с точки зрения изменения состояния объекта. В происходящих процессах могут произойти два типа изменения объекта: объект может поменять свое состояние или класс. Между этими двумя видами изменений по сути не существует принципиальной разницы: объекты, относящиеся к определенному классу K в начальном состоянии в течение процесса могут просто перейти к его дочернему или просто родственному классу. Например, полученная в процессе нагревания теплая вода, уже относится не к классу ВОДА, а к его дочернему классу ТЕПЛАЯ ВОДА. Однако при формальном описании процесса, во избежание путаницы, целесообразно разделять оба вида изменений, и для такого разделения используется обозначения следующего вида: "класс:состояние". Например теплая вода будет описываться следующим образом: "вода:теплая", холодная - "вода:холодная" и так далее. Таким образом, диаграммы состояния в IDEF5 наглядно представляют изменения состояния или класса объекта в течение всего хода процесса. Пример такой диаграммы приведен на рис.4 Заключение. Суммируя вышеизложенное, еще раз отметим, что строение и свойства любой системы могут быть эффективно исследованы и задокументированы при помощи следующих средств: словаря терминов, используемых при описании характеристик объектов и процессов, имеющих отношение к рассматриваемой системе, точных и однозначных определений всех терминов этого словаря и классификации логических взаимосвязей между этими терминами. Набор этих средств, по сути, и является онтологией системы, а стандарт IDEF5 предоставляет структурированную методологию, с помощью которой можно наглядно и эффективно разрабатывать, поддерживать и изучать эту онтологию.