Интеллектуальные информационные системы


Решение задачи "Разработка алгоритмов решения основных задач АСУ" - часть 16


(3. 52)

Вывод формулы (3.52) обобщенного коэффициента корреляции Пирсона для двух признаков совершенно аналогичен выводу формулы (3.47), поэтому он здесь не приводится. Формулы для всех входящих в (3.52) величин приведены выше в предыдущем разделе.

Так же, как и в режиме содержательного сравнения классов, в данном режиме сила связи выражается в процентах от максимальной теоретически–возможной силы связи. На диаграммах отображается 16 наиболее значимых связей, рассчитанных согласно этой формуле, причем знак связи изображается цветом (красный +, синий –), а величина – толщиной линии. Имеется возможность вывода диаграмм только с положительными или только с отрицательными связями.

Математическая модель позволяет получить обобщенные инвертированные когнитивные диаграммы для любых двух заданных признаков, для пар наиболее похожих и непохожих признаков, для всех их возможных сочетаний, а также инвертированные диаграммы Мерлина.

Необходимо отметить, что понятия, соответствующие по смыслу терминам "обобщенная инвертированная когнитивная диаграмма" и "инвертированная диаграмма Мерлина" не упоминаются даже в фундаментальных руководствах по когнитивной психологии и впервые предложены в [92]. Эти диаграммы представляют собой частный случай обобщенных когнитивных диаграмм признаков, формируемых в соответствии с предложенной математической моделью при следующих ограничениях:

1. Признак сравнивается сам с собой.

2. Выбрана фильтрация левого и правого вектора по уровням системной организации классов (аналог уровней Мерлина для свойств).

3. Левый вектор отображается с фильтрацией по одному уровню системной организации классов, а правый – по другому.

Обоснование сопоставимости частных критериев Iij

Применение этого метода корректно, если можно сравнивать суммарное количество информации о переходе АОУ в различные состояния, рассчитанное в соответствии с выражением (3.44), т.е. если они сопоставимы друг с другом.

Будем считать, что величины сопоставимы тогда и только тогда, когда одновременно выполняются следующие три условия:




Начало  Назад  Вперед



Книжный магазин